ANOVA: Comparing More Than Two Means

10.1 ANOVA: The Completely Randomized Design

1. Is there a difference between the calorie content of sandwiches at the three biggest burger chains? Use the data provided below and a 1% significance level to test the claim that at least one of the chains has a different calorie count from the others.
(Note: $\sum y_{i}=23,480, \sum y_{i}^{2}=15,733,800$)

McDonald's	Wendy's	Burger King
350	290	760
440	570	520
750	300	1140
330	800	340
390	330	750
330	290	1040
510	400	820
460	660	260
390	400	1230
620	250	800
540	330	520
380	580	1270
410	260	460
800	510	520
380		
	$\mathrm{n}=14$	$\mathrm{n}=14$
$\mathrm{n}=15$	Sum $=5970$	Sum = 10430

2. When a person wants to lose weight they are usually interested in minimizing the loss of lean mass fat loss, while maximizing fat loss. In 2005, researchers had previously untrained women participate in a 16 week study to determine the effects of four weight loss strategies on body composition. A summary of their findings is given below. Use a 2.5% level of significance to test the claim that each of the four strategies produces the same amount of fat loss.
Note: $\sum y_{i}=302.4, \sum y_{i}^{2}=2053.92$

Low Fat	Low Carb	Low Fat + RE	Low Carb + RE
$n=12$	$n=12$	$n=12$	$n=12$
$T=60$	$T=70.8$	$T=66$	$T=105.6$

*RE $=$ resistance training
3. The fuel consumption of an automobile is affected by the way it is driven. Researchers ran a series of tests involving three different driving styles. The fuel consumption was tracked during 18 fifty-mile trips using the three different styles. Use the results below and a 5% significance level to test the claim that the three different driving styles burn different average amounts of fuel
$\sum y_{i}=32.39, \sum y_{i}^{2}=58.3747$

Style A	Style B	Style C
1.75	1.85	1.85
1.65	1.81	1.85
1.71	1.79	1.90
1.66	1.78	1.89
1.76	1.86	1.85
1.76	1.83	1.84

$$
T_{A}=10.29, T_{B}=10.92, T_{C}=11.18
$$

Chapter 10

Answers:

1. Claim: At least one of the chains has a different calorie count from the others.
$H_{0}: \mu_{M}=\mu_{B}=\mu_{W}$
H_{a} : At least one of the chains has a different average calorie count.
$C F=12,821,172.09$

Source	DF	SS	MS	F
Chain	2	$836,716.478$	$418,358.239$	8.061
Error	40	$2,075,911.429$	$51,897.786$	
Total	42	$2,912,627.907$		

Test Stat : $F=\frac{418,358.239}{51,897.786} \approx 8.061$
Critical Value (s) : $f_{2,40,0.01}=5.179$
Initial Conclusion: Reject the null, support the alternative
Final Conclusion : The sample data support the claim...

This implies at least one of the fast-food chains has a significantly different calorie count than the others.
2. Claim: Each of the four strategies produces the same amount of fat loss.
$H_{0}: \mu_{L F}=\mu_{L C}=\mu_{L F R}=\mu_{L C R}$
H_{a} : At least one of the strategies causes a different average fat loss.
$C F=1,905.12$

Source	DF	SS	MS	F
Diet Strategy	3	104.88	34.96	35.023
Error	44	43.92	0.9982	
Total	47	148.8		

Test Stat: $F=\frac{34.96}{0.9982} \approx 35.023$
Critical $\operatorname{Value}(s): f_{3,44,0.025}=3.4633$ (since we don't have d.f. 44 , we used 40)
Initial Conclusion: Reject the null, support the alternative
Final Conclusion: The sample data rejects the claim...

This implies at least one of the weight-loss strategies has a significantly different fat loss than the others.
3. Claim: The three different driving styles burn different average amounts of fuel.
$H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$
H_{a} : At least one of the driving styles lead to different fuel consumption.
$C F=58.284$

Source	DF	SS	MS	F
Driving Style	2	0.069811	0.034906	25.0758
Error	15	0.020883	0.001392	
Total	17	0.090694		

Test Stat : $F=\frac{0.0349055}{0.001392} \approx 25.07579$
Critical Value $(s): f_{2,15,0.05}=3.6823$
Initial Conclusion: Reject the null, support the alternative
Final Conclusion: The sample data support the claim...

This implies at least one of the driving styles has a significantly different fuel consumption than the others.

